# **WATER QUALITY REPORT 2023**

# Magna Water District





8885 West 3500 South, Magna, UT 84044 (801) 250-2118 https://www.magnawater.com

## **DRINK LOCAL TAP WATER!**

# Magna Water 2023 ANNUAL WATER QUALITY CONSUMER CONFIDENCE REPORT

## Spanish (Espanol)

Este informe contiene informacion muy importante sobre la calidad de su agua beber. Traduscalo o hable con alguien que lo entienda bien.

## Dear Magna Water Customer,

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

#### **Emergency Contact Information**

Magna Water District is always exploring effective ways to notify customers in case of a boil order or other water-related emergency. Please sign up on our website for email or text alerts: <a href="https://www.magnawater.com/">https://www.magnawater.com/</a>

## IS MY WATER SAFE?

YES! Your drinking water meets or exceeds the standards set by the Environmental Protection Agency (EPA), the Utah Department of Environmental Quality, and the Division of Drinking Water.

### Where does my water come from?

Your water comes from ten wells located in two well fields. Magna Water District owns the land around these wells and restricts any activity that could contaminate them. Additional water is purchased through a perpetual yearly contract with Jordan Valley Water Conservancy District, which provides a redundant supply source in case of emergencies.

Jordan Valley Water Conservancy District provides a portion of the water distributed by Magna Water District. Water quality reports for Jordan Valley Water can be found at: https://jvwcd.org/water/wqrpage.

## Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

## **ARE THERE CONTAMINANTS IN MY DRINKING WATER?**

All sources of drinking water contain some naturally occurring constituents. At low levels, these substances are generally not harmful in our drinking water. Some naturally occurring minerals may improve the taste of drinking water and have nutritional value at low levels.

To ensure that tap water is safe to drink, EPA prescribes regulations that limit the concentration of certain contaminants in water provided by public water systems. Types of contaminants include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

## Is my drinking water treated?

Magna Water District operates a state-of-the-art electrodialysis reversal (EDR) facility to reduce or remove total dissolved solids (TDS), naturally occurring arsenic, and perchlorate. Your water is also treated by disinfection. Disinfection involves the addition of chlorine or other disinfectant to kill dangerous bacteria and microorganisms that may be in the water. Disinfection is considered one of the major public health advances of the 20th century.

## HOW DO I MEASURE HOW SAFE THE WATER IS?

The maximum contaminant level or MCL's for drinking water are set at very stringent levels to protect public health. To understand the possible health effects described for EPA regulated constituents, a person would have to drink a half-gallon of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

## **Drinking Water Quality Data Tables**

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the contaminants in drinking water provided by public water systems. The tables below list all the drinking water contaminants that were detected in your drinking water.

Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA and the State of Utah requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old.

In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions above the table.



## **DRINKING WATER QUALITY TABLES**

Data collected from water delivered in 2022 and earlier.

NA - not applicable, NE - not established, ND - not detected,

MCL = maximum contaminant level, MCLG = maximum contaminant level goal

Range

| Parameter                                  |            |                           | Detect             | ING   | iige     | Sample     |              |                                                                                                        |
|--------------------------------------------|------------|---------------------------|--------------------|-------|----------|------------|--------------|--------------------------------------------------------------------------------------------------------|
| (units)                                    | MCLG       | MCL                       | Average            | Low   | High     | Date       | Violation    | Notes / Typical Source                                                                                 |
| Disinfectants and Dis                      | infection  | By-Products               |                    |       |          |            |              |                                                                                                        |
| Note: There is convin                      | cing evide | nce that addit            | ion of a disinf    | ectan | t is nec | essary for | r control of | microbial contaminants.                                                                                |
| Haloacetic Acids<br>(HAA5, μg/L)           | NA         | 60                        | 13.2               | ND    | 26.7     | 2023       | No           | By-product of drinking water chlorination                                                              |
| TTHMs (Total<br>Trihalomethanes,<br>μg/L)  | NA         | 80                        | 32.7               | 2.4   | 54.4     | 2023       | No           | By-product of drinking water disinfection                                                              |
| Other Organic Chemi                        | cals       |                           |                    |       |          |            |              |                                                                                                        |
| No other regulated or organics, and carbam | _          | ere detected. N           | Monitored par      | amete | ers incl | ude pesti  | cides, herb  | icides, volatile organics, semivolatile                                                                |
| Primary Inorganic Ch                       | emicals    |                           |                    |       |          |            |              |                                                                                                        |
| Arsenic<br>(μg/L)                          | 0          | 10                        | 5.2                | 2.8   | 8.5      | 2023       | No           | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes |
| Nitrate as nitrogen (mg/L)                 | 10         | 10                        | 0.97               | NA    | NA       | 2023       | No           | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits            |
| Lead<br>(mg/L)                             | 4          | 90% of<br>homes<br><0.015 | All samples <0.015 | NA    | NA       | 2022       | No           | Corrosion of household plumbing systems, erosion of naturally occurring deposits.                      |
| Copper<br>(mg/L)                           | 1.3        | 90% of<br>homes<br><1.3   | All samples <1.3   | NA    | NA       | 2022       | No           | Corrosion of household plumbing systems, erosion of naturally occurring deposits.                      |
| Asbestos<br>(MFL)                          | 7.0        | 7.0                       | ND                 | NA    | NA       | 2023       | No           | Decay of asbestos cement in water mains, erosion of natural deposits                                   |

## **DRINKING WATER QUALITY TABLES (continued)**

Data collected from water delivered in 2021 and earlier.

NA - not applicable, NE - not established, ND - not detected,

MCL = maximum contaminant level, MCLG = maximum contaminant level goal

| Parameter                                   |      |                                          | Detect  | Range |      | Sample |           |                                                                                                                                                                              |
|---------------------------------------------|------|------------------------------------------|---------|-------|------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (units)                                     | MCLG | MCL                                      | Average | Low   | High | Date   | Violation | Notes / Typical Source                                                                                                                                                       |
| Microorganisms                              |      |                                          |         |       |      |        |           |                                                                                                                                                                              |
| E. coli (RTCR) - in the distribution system | 0    | 0                                        | 0       | NA    | NA   | 2023   | No        | Runoff from fertilizer use;<br>Leaching from septic tanks,<br>sewage; Erosion of natural<br>deposits                                                                         |
| Total Coliform (RTCR)                       | 0    | All<br>repeat<br>samples<br>are negative | 0       | NA    | NA   | 2023   | No        | MCL is for monthly compliance. All samples or repeat samples were negative. No violations were issued. Human and animal fecal waste; naturally occurring in the environment. |
| Radionuclides                               |      |                                          |         |       |      |        |           |                                                                                                                                                                              |
| Gross Alpha<br>(pCi/L)                      | NE   | 15                                       | 3.4     | NA    | NA   | 2023   | No        | Erosion of natural deposits                                                                                                                                                  |
| Gross Beta<br>(pCi/L)                       | 0    | 50                                       | 6.6     | NA    | NA   | 2023   | No        | Erosion of natural deposits                                                                                                                                                  |
| Radium 228<br>(pCi/L)                       | NE   | 5                                        | 0.37    | NA    | NA   | 2023   | No        | Erosion of natural deposits                                                                                                                                                  |

## **DRINKING WATER QUALITY TABLES (continued)**

Data collected from water delivered in 2021 and earlier. NA - not applicable, NE - not established, ND - not detected, MCL = maximum contaminant level, MCLG = maximum contaminant level goal

| Parameter                                     |            |                | Detect      | Rar    | nge    | Sample    |            |                                                                                                     |
|-----------------------------------------------|------------|----------------|-------------|--------|--------|-----------|------------|-----------------------------------------------------------------------------------------------------|
| (units)                                       | MCLG       | MCL            | Average     | Low    | High   | Date      | Violation  | Notes / Typical Source                                                                              |
| Secondary Inorganics                          |            |                |             |        |        |           |            |                                                                                                     |
| EPA recommends second                         | lary stand | dards to water | systems but | does n | ot req | uire syst | ems to cor | nply with the standard.                                                                             |
| Odor<br>(0-5 Scale)                           | 3          | NE             | ND          | NA     | NA     | 2022      | No         | Corrosion of household plumbing systems, erosion of naturally occurring deposits.                   |
| Color<br>(Color Units)                        | 15         | NE             | 10          | NA     | NA     | 2022      | No         | Corrosion of household plumbing systems, erosion of naturally occurring deposits.                   |
| pH<br>(pH Units)                              | 6.5-8.5    | NE             | 7.5         | 7.3    | 7.8    | 2023      | No         | Naturally present in the environment                                                                |
| Total Dissolved Solids<br>(TDS, mg/L)         | 500        | 2000           | 639         | 460    | 848    | 2023      | No         | Naturally occurring substances                                                                      |
| Unregulated Constituent                       | ts         |                |             |        |        |           |            |                                                                                                     |
| Hardness as calcium<br>carbonate<br>(mg/L)    | 60-120     | NE             | 105         | 58     | 185    | 2023      | No         | Naturally occurring minerals (scale <60 soft, 61-120 moderately hard, 121-180 hard, >180 very hard) |
| Trichlorotrifluoroethane<br>(Freon 113, μg/L) | NE         | NE (Note 1)    | 8.6         | ND     | 17.2   | 2023      | No         | Refrigerant, solvent, and aerosol propellant.                                                       |
| Perchlorate - finished<br>Blend<br>(μg/L)     | NE         | NE (Note 2)    | 1.7         | 0.49   | 3.02   | 2023      | No         | Used in manufacture of solid rocket propellants, munitions, fireworks, etc.                         |

## **ADDITIONAL INFORMATION**

#### **Additional Information for Arsenic**

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's water quality standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water.

Magna Water District can remove more arsenic from the water, beyond what the EPA requires, but the cost for additional treatment would be overly burdensome to Magna residents. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

### **Additional Information for Lead**

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

Magna Water District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/safewater/lead">http://www.epa.gov/safewater/lead</a>.

## **ADDITIONAL INFORMATION (continued)**

# Magna Water District Needs Your Help to Complete the EPA-Mandated Lead and Copper Water Line Inventory

In 2022, the U.S. Environmental Protection Agency issued a Lead and Copper Rule Revision for all drinking water systems. The revisions are designed to address potential sources of lead in drinking water supplies across the country. As required by the EPA, Magna Water District is working on a systemwide water service line inventory to identify, document and develop a plan to address any lead pipes in its system – including residential homes and businesses -- by October 2024.

Magna Water District sent letters to homes and businesses built prior to 1990 in February 2023 with a request to fill out a survey based on the results of a simple lead pipe test using a magnet and key or coin. We will be reaching out again to owners of properties built before 1990 who have not responded to our initial request. If you receive notice that your home or business needs to be investigated, please complete the 5-minute survey to help us ensure we have a complete service line inventory.

Going forward under the Lead and Copper Rule Revisions, more lead and copper monitoring and reporting to the public is required. In the future, additional information about lead and copper will be available on the Magna Water District website and within future Consumer Confidence Reports like the one you are currently reading. Magna Water District will let you know whether lead pipes are identified at your home or business. If lead pipes are found, we will evaluate and implement additional lead mitigation efforts and coordinate with you for the possible removal and replacement of the service line.

## JORDAN VALLEY WATER CONSERVANCY DISTRICT Consumer Confidence Report Data 2023

Report: B

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

| Section 1981 1992 1992 1992 1993 1994 1995 1995 1995 1995 1995 1995 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | change frequently.              |                       |         |             |          |          |              |            |              |                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|---------|-------------|----------|----------|--------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter                       | Units                 |         |             |          |          | toring Crite | ria        | Last Sampled | Comments/Likely Source                                                                                                         |
| March   196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                       | Average | Waxiiiiuiii | Wilhimum | MCL      | MCLG         | Violation  |              |                                                                                                                                |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | ug/l                  | ND      | ND          | ND       | 6.00     | 6.00         | No         | 2023         | Discharge from petroleum refineries: fire retardants: ceramics: electronics: solder.                                           |
| Section 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                         | ug/L                  | 1.2     | 4.3         | ND       |          |              | No         |              |                                                                                                                                |
| Continue   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asbestos                        | MFL                   |         |             |          |          |              | No         |              | Decay of asbestos cement in water mains: erosion of natural deposits.                                                          |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barium                          |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Section 1 19 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Sender 1994. 974. 975 175 175 175 175 175 175 175 175 175 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Copper                          |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Control   Cont   | Chromium                        | ug/L                  |         |             |          |          |              | No         |              | Discharge from steel and pulp mills; Erosion of natural deposits.                                                              |
| and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| The control of the co |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Ache                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |         |             |          |          |              |            |              | Erosion of naturally occurring deposits and runoff from landfills.                                                             |
| Internation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nickel                          | ug/L                  | 0.3     | 3.5         | ND       | NE       | NE           | No         | 2023         | Erosion of naturally occurring deposits.                                                                                       |
| Security    |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Control   Cont   |                                 |                       |         |             | ND       |          | 1.0<br>50.0  |            |              |                                                                                                                                |
| Infest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sulfate                         |                       |         |             | 13.5     |          |              |            | 2023         | Erosion of naturally occurring deposits.                                                                                       |
| Control   Cont   | Thallium                        |                       |         |             |          |          |              |            |              | Leaching from ore-processing sites and discharges from electronics, glass and drug factories.                                  |
| Training control water search and any angle of the control of the  |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| See March 1, Subaya T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turbidity (groundwater sources) |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Number   Market   M   | Lowest Monthly % Meeting TT     |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aluminum                        |                       |         |             |          |          |              |            |              | Erosion of naturally occurring deposits and treatment residuals.                                                               |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Color                           |                       |         |             |          |          |              |            |              |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iron                            |                       | 10.4    | 313.0       | ND       | SS = 300 | NE           | No         | 2023         | Erosion of naturally occurring deposits.                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese                       | ug/L                  | 1.7     | 34.0        | ND       | SS = 50  | NE           | No         | 2023         | Erosion of naturally occurring deposits.                                                                                       |
| Internal National Processing   1985   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   | Odor                            | TON                   |         |             |          |          |              |            |              |                                                                                                                                |
| Part      |                                 | ug/l                  |         |             |          |          |              |            |              |                                                                                                                                |
| MERCIAL ATTER PARAMETER 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zinc                            |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Machine Cargonises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UNREGULATED PARAMETERS - mo     | nitoring not required | d       |             |          |          |              |            |              |                                                                                                                                |
| Name   Processor   | Alkalinity, Bicarbonate         |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Naceriny, Test (CoCo)   mgl,   1077   2250   14.0   UR   NE   No.   2023   Naturally cocurring   Natural Coco   No.   1077   2250   14.0   UR   NE   No.   2023   Naturally cocurring   Natural Coco   No.   1077   2250   14.0   UR   NE   No.   2023   Naturally cocurring   Natural Coco   No.   1077   2250   14.0   UR   NE   No.   2023   Naturally cocurring   Natural Coco   No.   1077   2250   14.0   UR   NE   No.   2021   No.   2021   No.   1077   2250   14.0   UR   NE   No.   2021   No.   2021   No.   2021   No.   1077   2250   14.0   UR   NE   No.   2021   No.   2021   No.   2021   No.   2021   No.   1077   2250   14.0   UR   NE   No.   2021   No.   2022   No.  |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Management   Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                       | 107.7   |             |          | UR       |              |            |              |                                                                                                                                |
| Second   Mark   Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Part      | Bromide                         | ug/L                  | ND      | ND          | ND       | UR       | NE           | No         | 2021         |                                                                                                                                |
| Parented   Mary   Mode   Mod   | Boron                           |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Conditionation   Wilson   Wilson   W.   V.   V.   V.   V.   V.   V.   V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cobalt                          |                       |         |             |          |          |              |            | 2022         | Erosion of naturally occurring deposits.                                                                                       |
| Decision   Port   No   No   No   No   No   UR   NE   No   2009   Post-trained discharate from factories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |         |             |          |          |              |            |              | Naturally occurring.                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                       |         |             |          |          |              |            |              | Discharge from steet/metal factories; discharge from plastic and fertilizer factories.  Industrial discharge from factories.   |
| Seathern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |         |             |          |          |              |            |              | Industrial discharge from reactions.  Naturally occurring organic compound associated with musty odor.                         |
| Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hardness, Calcium               | mg/L                  | 113.4   | 186.0       | 12.0     | UR       | NE           | No         | 2023         | Erosion of naturally occurring deposits.                                                                                       |
| Internation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                       |         |             |          |          |              |            | 2023         |                                                                                                                                |
| Methodorum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| 20   A Greese   mog   ND   ND   ND   ND   UR   NE   No   2016   Pertoleum hydrocarbons can either coor from matural underground deposits or from man made lubricoares.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Molybdenum                      |                       |         |             |          |          |              |            |              | By-product of copper and tungsten mining.                                                                                      |
| Petassum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oil & Grease                    |                       |         |             |          |          |              |            |              | Petroleum hydrocarbons can either occur from natural underground deposits or from man made lubricants.                         |
| Silicate    | Orthophosphates                 |                       |         |             |          |          |              |            |              | Erosion of naturally occurring deposits.                                                                                       |
| Page      |                                 |                       |         |             |          |          |              |            | 2023         |                                                                                                                                |
| Furbility (distribution system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Commonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turbidity (distribution system) | NTU                   | 0.3     | 0.9         | 0.1      | UR       | NE           | No         | 2023         | Suspended material from soil runoff.                                                                                           |
| Delation of the content of the con   | Vanadium                        | ug/L                  | 1.4     | 3.3         | ND       | UR       | NE           | No         | 2022         | Naturally occurring.                                                                                                           |
| Distromochioromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | ug/l                  | 4.78    | 27.87       | ND       | LIB      | NE           | No         | 2023         | Bu-product of drinking water disinfection                                                                                      |
| Production combrane   Ug/L   1.53   6.80   ND   UR   NE   No   2023   By-product of drinking water disinfection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                       |         |             |          |          |              |            |              | By-product of drinking water disinfection.                                                                                     |
| Mill Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromodichloromethane            | ug/L                  | 1.53    | 6.80        | ND       | UR       | NE           | No         | 2023         | By-product of drinking water disinfection.                                                                                     |
| SE (24th/New) phthalate   ug/L   ND   ND   ND   6.0   0.0   No   2023   Discharge from rubber and chemical factories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromoform                       |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Size   24th   No.   No.   No.   No.   No.   No.   No.   No.   2023   Discharge from rubber and chemical factories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | ug/L                  | 1.01    | 31.2/       | IND      | various  | various      | INO        | 2023         | various sources.                                                                                                               |
| All No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bis (2ethylhexyl) phthalate     | ug/L                  | ND      |             | ND       | 6.0      | 0.0          | No         | 2023         | Discharge from rubber and chemical factories.                                                                                  |
| Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All Other Parameters            |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Section   Sect   | RADIOLOGICAL                    | mC14                  | 0.0     | 1.0         | 1 05     | l NE     | l NE         | N1-        | 2000         | Decay of valued and man made describe                                                                                          |
| Signes-Beta   PCI/L   2.6   7.2   0.5   15.0   NE   No   2023   Decay of natural and man-made deposits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Decay of natural and man-made deposits.   Decay of natural and man-made deposits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross-Alpha                     |                       |         |             |          |          |              |            |              |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross-Beta                      | pCi/L                 | 3.8     | 11.0        | 0.9      | 50.0     | NE           | No         | 2023         | Decay of natural and man-made deposits.                                                                                        |
| DISINFECTION BY-PRODUCTS   DISINFECTION BY-PRODUCT OF drinking water disinfection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uranium                         | ug/L                  | 3.5     | 7.5         | 0.0      | 30.0     | NE           | No         | 2023         |                                                                                                                                |
| Chlorine   mg/L   0.8   1.5   0.01   4.0   NE   No   2023   Drinking water disinfectant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radon                           |                       | ND      | ND          | ND       | NE_      | NE           | No         | 2020         | Naturally occurring in soil.                                                                                                   |
| Ti-Mis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorine                        |                       | 0.8     | 1.5         | 0,01     | 4.0      | NF           | No         | 2023         | Drinking water disinfectant.                                                                                                   |
| AAAS   ug/L   16.0   65.1   ND   60.0   NE   No   2023   High result is not a volation, violation is determined on annual location average, By-product of drinking water disinfection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TTHMs                           |                       |         |             |          |          |              |            |              |                                                                                                                                |
| Inhest Annual Location Wide Avg.   ug/L   ND   ND   10.0   NE   No   2023   By-product of drinking water disinfection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HAA5s                           | ug/L                  | 16.0    | 65.1        | ND       |          | NE           | No         |              | High result is not a violation, violation is determined on annual location average. By-product of drinking water disinfection. |
| Strong   S   | HAA6                            |                       | 53.0    | 70.9        |          |          |              |            | 2023         | By-product of drinking water disinfection.                                                                                     |
| Chlorine   Divide     |                                 |                       | ND      | ND          |          |          |              | Ig/L<br>No | 2023         | By-product of drinking water disinfection                                                                                      |
| Description      | Chlorine Dioxide                |                       |         |             |          |          |              |            |              |                                                                                                                                |
| DRGANIC MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chlorite                        |                       |         |             |          |          |              |            |              | By-product of drinking water disinfection.                                                                                     |
| Dissolved Organic Carbon mg/L 2.2 2.7 1.8 TT NE No 2023 Naturally occurring.  JV-254 1/cm 0.02 0.04 0.02 UR NE No 2023 This is a measure of the concentration of UV-absorbing organic compounds. Naturally occurring.  PROTOZOA (sampled at source water)  Dryptosportidium Occysts/1L 0.02 0.01 ND TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  Siardia Cysts/1L 0.1 0.5 0.0 TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  MICROBIOLOGICAL  Total Coliform Prositive per No.00% Not >5% 0.00 No 2023 MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal fecal waste, naturally occurring in the environment.  MPC Month MCL: Maximum Contaminant Level ND: None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ORGANIC MATERIAL                |                       |         |             |          |          |              |            |              | The same of                                                                                                                    |
| JV-254 1/cm 0.02 0.04 0.02 UR NE No 2023 This is a measure of the concentration of UV-absorbing organic compounds. Naturally occurring.  PROTOZOA (sampled at source water)  Proposordium Occysts/IL 0.002 0.01 ND TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  Significa Cysts/IL 0.1 0.5 0.0 TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  HICROSIOLOGICAL  Total Coliform Positive per Month Month Month MC. 2 56.0 2.0 500.0 0.0 No 2023 MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal fecal waste, maturally occurring in the environment.  HPC MPN/mL 8.2 56.0 2.0 500.0 0.0 No 2023 Used to measure the overall bacteriological quality of drinking water month. Inclinarian per liter MCL: Maximum Contaminant Level ND: None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Organic Carbon            |                       |         |             |          |          |              |            |              |                                                                                                                                |
| PROTOZOA (sampled at source water)  Chyptosporidium Occysts/1L 0.002 0.01 ND TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  Gladfal Cysts/1L 0.1 0.5 0.0 TT 0.00 No 2017 Parasite that enters lakes and rivers through sewage and animal waste.  Gladfal Colform No Positive per Month 8.2 56.0 2.0 50.0 0.0 No 2023 MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal fecal waste, naturally occurring in the environment.  Gladfal Colform No No No No 2023 MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal fecal waste, naturally occurring in the environment.  Gladfal Colform No No No No 2023 Used to measure the overall bacteriological quality of drinking water  MCL: Maximum Contaminant Level ND: None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                       |         |             |          |          |              |            | 2023         |                                                                                                                                |
| Cryptspordidum   Crysts/1L   0.002   0.01   ND   TT   0.00   No   2017   Parasite that enters lakes and rivers through sewage and animal waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROTOZOA (sampled at source wat | er)                   |         |             |          |          |              |            |              |                                                                                                                                |
| MICROBIOLOGICAL  Total Coliform    Websitive per   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.0 | Cryptosporidium                 | Oocysts/1L            |         |             |          |          |              |            |              |                                                                                                                                |
| Total Coliform    Not Seed   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0.00%   0 | Giardia                         | Cysts/1L              | 0.1     | 0.5         | 0.0      | TT       | 0.00         | No         | 2017         | Parasite that enters takes and rivers through sewage and animal waste.                                                         |
| HPC MRVmL 8.2 56.0 2.0 500.0 0.0 No 2023 Used to measure the overall bacteriological quality of drinking water  mQL: milligrams per liter MCL: Maximum Contaminant Level ND: None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | % Positive per        | 0.00%   | 0.00%       | 0.00%    | Not >5%  | 0.00         | No         | 2023         | MCL is for monthly compliance. All repeat samples were negative; no violations were issued. Human and animal focal waste       |
| HPC MPN/mL 8.2 56.0 2.0 500.0 0.0 No 2023 Used to measure the overall bacteriological quality of drinking water  mg/L: milligrams per liter MCL: Maximum Contaminant Level ND: None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                       | 5.5070  | 0.0070      | 5.50 /6  | 2070     | 5.00         | . 10       | 2323         |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HPC                             |                       |         |             |          |          |              |            |              |                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L: milligrams per liter      |                       |         |             |          |          |              |            |              |                                                                                                                                |

myL: milligrams per liter ug/L: micrograms per liter pug/L: micrograms per liter nuf/L: nanograms per liter nuf/L: nanograms per liter nuf/L: nanograms per liter nuf/L: Napeholmetric Turbidity Unit CU: Color Unit TON: Threshold Odor Unit umhos/cm: micro ohms per centimeter 1/cm: One / centimeter pci/L: piocouries per liter MFL: Millions of Fibers per Liter MFL: Millions of Fibers per Liter MFL: Millions of Fibers per Liter Cocysts/1L: Occysts per 1 liter Cvsts/1L: Cvsts per 1 liter

MCI: Maximum Contaminant Level MCI: Maximum Contaminant Level Goal TTHM: Total Trihalomethanes HAA5s: Five Haloacetic Acids HPC: Heterotrophic Plate Count VOCs: Volatile Organic Compounds PCEs: Polychioriated Biphenvils SOCs: Synthetic Organic Chemicals

ND: None Detected
NA: Not Applicable
NE: Not Established
UR: Unrequiated
TT: Treatment Technique
AL: Action Level
SS: Secondary Standard

#### JORDAN VALLEY WATER CONSERVANCY DISTRICT Consumer Confidence Report Data - UCMR 5 2023

#### Report: UCMR Appendix

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report for the Unregulated Contaminant Monitoring Rule. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

| Parameter                                                       | Units      | Average      | Maximum   | Minimum | Monitoring Criteria |             |           | Last    | Comments/Likely Source                                           |
|-----------------------------------------------------------------|------------|--------------|-----------|---------|---------------------|-------------|-----------|---------|------------------------------------------------------------------|
|                                                                 |            |              |           |         | MCL                 | MCLG        | Violation | Sampled | ,                                                                |
| Unregulated Parameters                                          |            |              |           |         |                     |             |           |         |                                                                  |
| Lithium, Total                                                  | ug/L       | 2.8          | 16        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluorobutanoic acid (PFBA)                                   | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluoro-3-methoxypropanoic acid (PFMPA)                       | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluoropentanoic acid (PFPeA)                                 | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluorobutanesulfonic acid (PFBS)                             | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluoro-4-methoxybutanoic acid (PFMBA)                        | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)                 | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| nonafluoro-3,6-dioxaheptanoic acid (NFDHA)                      | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| 1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)            | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluorohexanoic acid (PFHxA)                                  | ua/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluoropentanesulfonic acid (PFPeS)                           | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | 1                                                                |
| hexafluoropropylene oxide dimer acid (HFPO DA)                  | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | 1                                                                |
| perfluoroheptanoic acid (PFHpA)                                 | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | The Unregulated Contaminant Monitoring Rule (UCMR) is a          |
| perfluorohexanesulfonic acid (PFHxS)                            | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | monitoring program mandated by EPA. It requires public           |
| 4,8-dioxa-3H-perfluorononanoic acid (ADONA)                     | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | water systems to monitor various sites every three (3) years     |
| 1H,1H, 2H, 2H-perfluorooctane sulfonic acid                     | //         | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | for different parameters selected by EPA. This rule collects     |
| (6:2FTS)                                                        | ug/L       |              |           |         |                     |             |           |         | occurance data on parameters that EPA is considering for         |
| perfluoroheptanesulfonic acid (PFHpS)                           | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | regulation. Sometimes EPA includes parameters that already       |
| perfluorooctanoic acid (PFOA)                                   | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | have an MCL but they would like to know the occurance of it      |
| perfluorononanoic acid (PFNA)                                   | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | at significantly lower levels than the current analytical method |
| perfluorooctanesulfonic acid (PFOS)                             | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | allows. These numbers represent samples taken during the         |
| 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS) | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | monitoring period which began in 2023 and will conclude in 2025. |
| perfluorodecanoic acid (PFDA)                                   | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | 1                                                                |
| 1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)            | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | 1                                                                |
| perfluoroundecanoic acid (PFUnA)                                | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | =                                                                |
| 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic                  |            |              |           |         |                     |             |           |         | 1                                                                |
| acid (11CI-PF3OUdS)                                             | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluorododecanoic acid (PFDoA)                                | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| n-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)       | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)        | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| perfluorotridecanoic acid (PFTrDA)                              | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    | 1                                                                |
| perfluorotetradecanoic acid (PFTA)                              | ug/L       | ND           | ND        | ND      | UR                  | NE          | No        | 2023    |                                                                  |
| mg/L: milligrams per liter                                      | MCL: Maxim | um Contamina | ant Level |         |                     | ND: None De | etected   |         |                                                                  |

mg/L: milligrams per liter ug/L: micrograms per liter ng/L: nanograms per liter

MCL: Maximum Contaminant Level MCLG: Maximum Contaminant Level Goal

ND: None Detected NA: Not Applicable NE: Not Established UR: Unregulated